A Viscosity-Dependent Affinity Sensor for Continous Monitoring of Glucose in Biological Fluids

نویسنده

  • Christophe BOSS
چکیده

For fifty years, tremendous efforts have been directed towards the development of glucose sensors for tight glycemic control of diabetic patients. Today, millions of diabetics test their blood glucose level daily, making glucose the most commonly tested analyte. Recently, subcutaneous implantable needle-type sensors became commercially available for continuous glucose monitoring. However, these devices require frequent calibrations and are lacking accuracy and reliability. They are based on electrochemical detection, which is strongly affected by the biological environment in which the sensor is placed. In addition, an accurate and reliable continuous glucose sensor would also be of great interest for tight glycemic control in intensive care units of hospitals. However, despite the many impressive breakthroughs, the development of clinically accurate continuous glucose sensors remains a challenge. In this context, alternative approaches to overcome the limitation of electrochemical methods have been actively investigated. Among these, affinity sensing should offer several intrinsic advantages for in vivo monitoring. In this thesis, we investigate a novel viscosity-dependent affinity sensor for continuous monitoring of glucose in biological fluids such as blood and plasma. The sensing principle relies upon the viscosity variation of a sensitive fluid with glucose concentration. The sensitive fluid is based on the competitive binding of glucose and dextran with a glucosespecific binding protein, Concanavalin A. Basically, the sensor is filled with the sensitive fluid, and includes both an actuating and a sensing piezoelectric diaphragm as well as a flow-resistive microchannel. In addition, a nanoporous alumina membrane completely retains the sensitive fluid within the sensor whilst allowing glucose permeation through the membrane. The sensor was extensively tested in isotonic saline solution for physiological blood glucose concentrations between 2 and 20 mM, demonstrating

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-analyte Detection for Biological Fluids - Towards Continous Monitoring of Glucose, Ionized Calcium and pH using a Viscometric Affinity Biosensor

We present a viscometric affinity biosensor that can potentially allow continuous multi-analyte monitoring in biological fluids like blood or plasma. The sensing principle is based on the detection of viscosity changes of a polymeric solution which has a selective affinity for the analyte of interest. The chemicomechanical sensor incorporates an actuating piezoelectric diaphragm, a sensing piez...

متن کامل

A viscosity-dependent affinity sensor for continuous monitoring of glucose in biological fluids.

We present a viscometric affinity biosensor for continuous monitoring of glucose in biological fluids such as blood and plasma. The sensing principle of this chemico-mechanical sensor is based upon the viscosity variation of a sensitive fluid with glucose concentration. Basically, this device includes both an actuating and a sensing piezoelectric diaphragms as well as a flow-resistive microchan...

متن کامل

Micro-Electromechanical Affinity Sensor for the Monitoring of Glucose in Bioprocess Media

An affinity-viscometry-based micro-sensor probe for continuous glucose monitoring was investigated with respect to its suitability for bioprocesses. The sensor operates with glucose and dextran competing as binding partner for concanavalin A, while the viscosity of the assay scales with glucose concentration. Changes in viscosity are determined with a micro-electromechanical system (MEMS) in th...

متن کامل

A Microfabricated Dielectric Affinity Sensor for Continuous Glucose Monitoring

We present a microfabricated affinity sensor using permittivity measurement for continuous glucose monitoring (CGM). This device is based on a perforated electrode separated from a bottom electrode on a substrate by a solution of a synthetic glucose-sensitive polymer. Glucose permeates through the perforated electrode and binds with the polymer, leading to a change in the polymer solution permi...

متن کامل

Convection Heat Transfer Modeling of Nano- fluid Tio2 Using Different Viscosity Theories

In this paper, the effects of adding nanoparticles including Tio2 to a fluid media for purpose of free convection heat transfer improvement were analyzed. The free convection was assumed to be in laminar flow regime and the solutions and calculations were all done by the integral method. Water, as a Newtonian fluid, was considered the base fluid (water) and all the thermo physical properties of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012